Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling.

نویسندگان

  • Lale Ozcan
  • Jane Cristina de Souza
  • Alp Avi Harari
  • Johannes Backs
  • Eric N Olson
  • Ira Tabas
چکیده

A hallmark of obesity is selective suppression of hepatic insulin signaling ("insulin resistance"), but critical gaps remain in our understanding of the molecular mechanisms. We now report a major role for hepatic CaMKII, a calcium-responsive kinase that is activated in obesity. Genetic targeting of hepatic CaMKII, its downstream mediator p38, or the p38 substrate and stabilizer MK2 enhances insulin-induced p-Akt in palmitate-treated hepatocytes and obese mouse liver, leading to metabolic improvement. The mechanism of improvement begins with induction of ATF6 and the ATF6 target p58(IPK), a chaperone that suppresses the PERK-p-eIF2α-ATF4 branch of the UPR. The result is a decrease in the ATF4 target TRB3, an inhibitor of insulin-induced p-Akt, leading to enhanced activation of Akt and its downstream metabolic mediators. These findings increase our understanding of the molecular mechanisms linking obesity to selective insulin resistance and suggest new therapeutic targets for type 2 diabetes and metabolic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

CaMKII in Cardiometabolic Disease

worldwide epidemic of obesity is closely linked to insulin resistance and type 2 diabetes (T2D), which have led to a critical need for new drug development. Insulin resistance and T2D contribute to the pathogenesis of many diseases including fatty liver disease, cardiovascular disease, kidney failure and retinal disease. Moreover, the incidence of T2D increases with age, and several epidemiolog...

متن کامل

Treatment of Obese Insulin-Resistant Mice With an Allosteric MAPKAPK2/3 Inhibitor Lowers Blood Glucose and Improves Insulin Sensitivity

The prevalence of obesity-induced type 2 diabetes (T2D) is increasing worldwide, and new treatment strategies are needed. We recently discovered that obesity activates a previously unknown pathway that promotes both excessive hepatic glucose production (HGP) and defective insulin signaling in hepatocytes, leading to exacerbation of hyperglycemia and insulin resistance in obesity. At the hub of ...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

SUPPRESSION OF VLDL-TRIACYLGLYCEROL SECRETION B Y BOTH α AND β-ADRENOCEPTOR AGONISTS IN ISOLATED RAT HEPATOCYTES

The effects of alpha and beta-adrenergic stimulation on triacylglycerol secretion were investigated in isolated rat hepatocytes. Epinephrine within 3h of incubation suppressed triacylglycerol secretion by 35% and increased its cellular content by 18%. The inhibitory effect of epinephrine was abolished by inclusion of phentolamine and also prazosin but not with propranolol. Trifluoperazine c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell metabolism

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2013